
Are Amazon’s Book Algorithms Sexist?
This content contains affiliate links. When you buy through these links, we may earn an affiliate commission.
Let’s cut right to the chase. Are Amazon’s book-recommending algorithms sexist? It’s nigh impossible to prove—or disprove.
But it’s a question worth investigating, given the sheer power Amazon now possesses in the book publishing and bookselling industries. The matter is also worth probing given how little we know about Amazon’s algorithms, the blips of computational magic that determine which books you (supposedly) want to see, and which books you (supposedly) don’t.
If you buy books from Amazon, its product recommendation engine wields immense power over what you see and, ultimately, what you buy. Think of it as a librarian recommending books to you based on your interests—but the librarian is invisible and discovered your interests by covertly recording your Goodreads searches, and then comparing them with everyone else’s Goodreads searches.
What does Amazon do with that kind of power? What do its choices mean for you, the user and consumer of its service? These are the questions we should be asking a company that dominates book sales. And the place to start is with its recommendation algorithms.
What Exactly Are Algorithms?
Let’s start with the most important question: what the heck are algorithms? Amazon’s algorithms—like those of most major tech companies—are proprietary, the “secret sauce” that makes internet giants run. That lack of transparency is one of many troubling tech trends Sara Wachter-Boettcher examines in the eye-opening Technically Wrong: Sexist Apps, Biased Algorithms, and Other Threats of Toxic Tech. Algorithms themselves are specific sets of steps that need to be done to perform computations, Wachter-Boettcher explains. They’re not magic. Algorithms perform mathematical computations humans could do but at a scale we could never manage. And we use them everywhere, to do everything. “Algorithms now control a huge number of systems that we interact with every day—from which posts bubble up to the top of your Facebook feed, to whether image recognition software can correctly identify a person, to what kinds of job ads you see online,” Wachter-Boettcher writes. The trouble? Algorithms aren’t built in a vacuum. “No matter how much tech companies talk about algorithms like they’re nothing but advanced math, they always reflect the values of their creators: the programmers and product teams working in tech,” Wachter-Boettcher explains in Technically Wrong. “And as we’ve seen time and again, the values that tech culture holds aren’t neutral. After all, the same biases that lead teams to launch a product that assumes all its users are straight, or a signup form that assumes people aren’t multiracial, are what lead them to launch machine-learning products that are just as exclusive and alienating—and, even worse, locked in a black box, where they’re all but invisible.”An Experiment With Amazon’s Book Algorithms
Despite what you may think, I’m not an army of automated tester bots. There’s almost no way I could gather enough data to determine definitively the biases of Amazon’s book algorithms. Earlier this year, The Atlantic looked into whether Amazon privileged its own products in search results. It was nearly impossible to tell because of those proprietary algorithms, their mechanics shielded from view inside the “black box” Wachter-Boettcher described. (Amazon representatives denied the claims, though they did admit the algorithms look at “profitability” when displaying products.) Still, I was curious to see what I could learn from a brief experiment with Amazon’s book recommendations. Scrubbed of all my identifying data—a consumer with an entirely clean slate—I wanted to know which books Amazon would recommend for me, and if those recommendations showed any clear patterns toward favoring male authors. To start, I created an entirely new email account with as little profile information as possible, including no gender specification. (Who knows how much information one service provider shares with another?) Then I used that fresh new email to create an equally blank Amazon account. From there, I selected a handful of test titles to search. The titles I picked ran the genre gamut deliberately, so Amazon couldn’t easily peg me as any certain kind of reader. In evaluating the results, I looked at several avenues Amazon uses to recommend additional titles:- Customers Who Viewed This Item: These recommendations appear on the page of the book you’re looking at, apparently culled from data about other users who’ve looked at the same book.
- Inspired By Your Browsing History: Amazon recommends items similar (by some criteria) to those you’ve viewed.
- Related to Items You Viewed: This category of recommendations is labeled differently and appears in a different place within Amazon’s site, but ultimately performs a similar function as “Inspired By Your Browsing History” recommendations.
The Results: Amazon’s Book Recommendations
I started the experiment by searching my chosen test titles. For each title, I recorded the “Customers Who Viewed This Item” recommendations.- Search No. 1: Harry Potter and the Sorcerer’s Stone by J.K. Rowling (sigh). I picked the first Harry Potter novel because it’s an enormously popular book with a plethora of read-alikes in different genres. Of course, there’s also just a lot of Harry Potter–related books, movies, and merchandise. So the related recommendations were all Harry Potter products. I should’ve seen that coming…
- Search No. 2: The Way of Kings by Brandon Sanderson. I pivoted to the historically male-dominated genre of high fantasy and searched for a title with a male author. I was curious to see if Amazon would recommend any fantasy works by women (of which there are plenty!) when I wasn’t specifically looking for them. It did not. Recommendations included novels by 24 authors; only two were written by women (N.K. Jemisin and Robin Hobb).
- Search No. 3: Pachinko by Min Jin Lee: Next, I searched for this literary fiction novel written by a woman. And here the results tell a different story. Works by 49 authors were recommended, 35 of which were written by women. Notably, these recommendations also reflected much greater racial parity than the previous search for Brandon Sanderson, an interesting data point when comparing a search for novel written by a Korean American woman versus a novel written by a white man.